
Wordified Ontologies: Evaluating a Novel Paradigm for Ontology Editing

Aisha Blfgeh1,2 and Phillip Lord1

1School of Computing, Newcastle University, UK
2College of Computer Sciences and Engineering, University of Jeddah, Saudi Arabia

Abstract

Ontologies can be edited with tools such as Protégé, or with
various other forms of source code. The editing process in-
volves insertion, deletion, or fixing errors. In this paper we
propose an editing process using Microsoft Word, where users
can manipulate any text, adding comments and use all the fa-
cilities provided by a familiar word-processing environment.
This new technique for visualising and editing ontologies has
been tested and evaluated; the results are promising as mod-
ifying an ontology in Word is preferred by users to Protégé
for some ontology editing tasks. We suggest, therefore, that
alternative text based representations and office tools may be
useful in the ontology engineering lifecycle.

Keywords:
Ontology Editing, Wordified ontology, User Evaluation

Introduction

Ontology development is a collaborative process which involves a
sustained interaction between domain specialists and ontology de-
velopers. As shown in Figure 1, we designed a document-centric
workflow to enable the co-ordinated use of Microsoft Office tools
(Excel and Word) for ontology development. An Excel spread-
sheet is used as a source of values that instantiate patterns, de-
fined in Tawny-OWL 1 source code [1], to construct the ontology.
We have also generated a Word document of an ontology; we de-
note this representation as a Wordified Ontology. It allows domain
specialists to cooperate and interact with the developers in edit-
ing the ontology during the development process [2]. The use of
Word documents enables us to include the documentation of the
ontology with the computational components.

In some ways, this is similar to an “Intermediate representation”
as defined by Rector et al˙ [3], where the knowledge from experts
is transformed into a semi-formal syntax that the ontology devel-
opers use to deal with ontological information. Also, using dif-
ferent syntaxes to instantiate patterns is not new; for example in
OPPL (Ontology Pre-Processing Language) [4], and DOSDP [5]
where an abstract syntax is used for effectively editing the on-
tology. Office tooling has been integrated into the ontology de-
velopment process before such as with Populous [6] and our own,
Excel-based approach [1]), however only with the more structured
forms of spreadsheets. To our knowledge, the use of arbitrary
syntax tightly integrated and presented in rich Word documents
is novel.

1https://github.com/phillord/tawny-owl

User evaluation is a standard part of the software engineering
cycle; it has previously been applied to various aspects of ontology
engineering, including the use of foundational ontology in ontology
development [7], and finding frequent user activities in Protégé
using Eye-tracking analysis [8].

Others have concluded that [9] the tools used for reading and
understanding an ontology play a critical role in determining the
usability of that ontology. Furthermore, by using a verbalised
version of the ontology in their evaluation practice, they found
that this supports the identification of mistakes in the ontology.

In our previous work, we have shown that it is possible to wordify
an ontology; however, to demonstrate that it is also useful to do
this, we need some form of evaluation. In this study, we assess the
comprehension/manipulation of an ontology presented in this way.
We conducted several experiments where users read and manipu-
lated the Wordified ontology as well as performing the same tasks
using Protégé; then we assessed their performance and measured
their level of satisfaction using feedback forms.

This paper is organised as follows: first we describe existing
alternative tools for ontological documentation, then we show our
new visualisation version of the ontology. After that, we describe
the experiments with users and show the results. Finally, we
discuss the results and draw conclusions.

Figure 1: Document-Centric Ontology Development Work-
flow

Alternative representations of Onto-
logical Knowledge

There have been many other attempts to present ontological
knowledge in predominately textual formats. For example, OWL-
Doc is a Protégé plugin that generates HTML documentation [10].
It was inspired by JavaDoc, which does something similar with
Java source code. The aim of OWLDoc is to provide a browsable,
but not editable, experience of the ontology inside Protégé or in

1

Copyright © 2019 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

https://github.com/phillord/tawny-owl


a standalone web browser. While this works well, if errors are
discovered the user has to move into a different environment to
fix them.

Another mechanism for visualisation 2 was the “Intermediate Rep-
resentation” [3]. This mechanism produces semi-structured text
representations (Figure 2a), which were designed for domain spe-
cialists to read and edit, before being checked and cleaned by
knowledge engineers who would correct their syntax and seman-
tics; this representation was used to enable authoring of the final
ontology. Many years after, a similar practice has been incorpo-
rated into software engineering with Behaviour-Driven develop-
ment tools such as Cucumber; this allows semi-structured state-
ments (Figure 2b) to define requirements which can be tested
computationally as part of the software testing lifecycle.

MAIN plastic construction

ACTS_ON ulna

BY_TECHNIQUE transplanting

ACTS_ON bone

WITH immobilising

BY_MEANS_OF fixation device

(a) Intermediate representation

Feature: Return Microwave

Scenario: Fred gets his money back

Given Fred has bought a microwave

And the microwave cost 100

When we refund the microwave

Then Fred should be refunded 100

(b) Cucumber

Figure 2: Intermediate representation and Cucumber text

An alternative to an intermediate representation is to use an on-
tology syntax, which is designed to be readable to knowledge en-
gineers such as Manchester Syntax ; this was aimed at editing and
representing all the aspects of an ontology, including the extra-
logical parts which are critical for understanding the ontology in
the context of its domain [11]. Unlike other syntax it is frame-
based, grouping statements about a single domain concept, rather
than axiom-based where statements are essentially unordered.

We use the mechanism of adding comments in the source code; we
have previously described these as literate ontologies [12, 13] where
we produce LaTeX, ASCII and OWL versions from a single source
code. In our case, we produce a Microsoft Word version, and the
final Wordified ontology is formatted as we desired. Figure 3 shows
an extract of an Wordified ontology. In the following section we
explain the mechanism for generating an Wordified ontology.

Microsoft Word and Ontology Repre-
sentation

Although there is no clear structure of what ontology documen-
tation should be, we started by creating a guidance document on

2We use the term visualisation in a broader fashion than is common,
to include text on screen

how to build a “Pizza Ontology”. We have included an explana-
tion of logical classifications of the ontology in a narrative style
as well as the Tawny-OWL source code which fulfils the chrono-
logical story of Pizza Ontology construction. Unlike Protégé, this
narrative structure of the ontology offers the ability to explore
ontologies as a linear, narrative document.

A Wordified ontology is the narrative version of the ontology and
includes the whole source code of an ontology using Tawny-OWL
syntax. We intentionally include the Tawny-OWL source code be-
cause of its textual representation. It was designed after Manch-
ester syntax to be straightforward allowing a developer (or non de-
veloper) to read it without deep knowledge of the syntax. There-
fore, we chose to have the complete source code of the ontology in
the Wordified ontology, also we have the other purpose of testing
the ability to comprehend the Tawny-OWL source code by users.

Figure 3: Wordified ontology: A structured and readable text
with headings and source code syntax highlighted

Therefore, our mechanism for adding ontology documentation is
based on adding a rich commentary text within the Tawny-OWL
source code through out the ontological and software statements:
a form of literate programming. Additionally, we use markup an-
notations to produce a structured documentation as well as the
Tawny-OWL source code text. This form of source code can be
transformed into a Word document; in Figure 3, we show how
the text is structured and formatted with headings and subhead-
ings; the source code of Tawny-OWL is also shown in a syntax
highlighted text blocks.

Next, we describe the evaluation process of Wordified ontologies.

Evaluation Experiments

The aim of our evaluation is to discover how easy for users to
comprehend and interact with such a new form of the ontology.
We achieve this by having the users read an ontology, understand
their structure and search for errors introduced into our sample
ontologies.

We arranged controlled testing sessions to test the comprehen-
sion of the Wordified ontology and compare the performance by

2



(a) Wordified Ontology (b) Ontology in Protégé

Figure 4: Testing ontologies

visualising the same ontology in Protégé. In other words, the par-
ticipants examine the same ontology in the two different visuali-
sations. These visualisations can be seen in Figure 4 below3. Our
participants were mostly postgraduate students and researchers
with a variety of backgrounds and experience in ontologies. Some
have a decent knowledge in building ontologies and some are to-
tally unfamiliar.

We wished to test the ease of reading and understanding the
Wordified ontology as well as how easy it is to discover errors.
Therefore we injected a few errors, both logical and extra-logical,
into the ontology for users to find during the test. We prepared
multiple versions of ontologies, so that the participants could ex-
plore different visualisations of the same ontology, but with dif-
ferent sets of errors.

In each version of the ontology, we have engineered four or five
errors to be detected. These errors are either in classification or
in some logical specifications of properties/classes, such as the
range/domain of a property, and the disjointedness of sub-classes.
Figure 4 shows examples of one error in Wordified ontology and in
Protégé. Additionally, We have not included any spelling errors
because they are instantly can be detected by the Microsoft Word
software spelling checker, and in Protégé test; the participants are
not allowed to run any reasoner checks.

After introducing the experiment objectives and the tasks to per-
form in the test, we provided instruction sheets in details for more
assistance during the session. A participant starts with either
a Wordified ontology or in Protégé, the selection process being
randomly performed by the experimentor to ensure the variety
between the participants in one session 5. Hence, there are two
different paths through testing experiment, depending on which
version of the ontology they see first (Figure 5). This was done to
ensure that preference between visualisation would not be affected
by either fatigue or use of knowledge from the first test affecting
the second. Additionally, we set an equal time limit to spend in
each part to ensure fairness of the two tests. Finally, the par-

3Each ontology in this Figure has an error, can you find them?4
5There was no particular procedure to randomise the selection; we

tried to maintain a reasonable distribution amongst our sample.

ticipants write their feedback electronically about the following
aspects:

• Clarity of ontology structure.

• Understanding the construction flow of the ontology.

• The ease of reading the ontology.

• Editing the ontology.

• Finding errors.

The feedback questions aim to measure how easy it is to read,
comprehend, and edit Wordified ontology. All answers were rated
using a five point Likert scale.

Figure 5: Evaluation Experiment Workflows

3



Expertise level of the participants

To maintain the fairness of our test and ensure the variety of expe-
rience levels, we asked the subjects about their level of experience
and education. We asked basic demographic data as some peo-
ple may under/over estimate their abilities depending on many
factors, such as gender, age, etc (data not shown). The subjects
experience level in ontology construction and usage is shown in
Figure 6. About 32% and 40% of the subjects are ”Somewhat
Familiar” with ontology usage and construction respectively. We
had about 16% and 20% of the participants consider themselves
to have a ”Mastery” level in ontology usage and construction. In
our experiment, therefore, the experience was reasonably spread
across range of different expertise; this allowed us to get a rea-
sonable sample size, which would not have been possible if we
restricted, for example, only to experts; it is probably reflective of
the ontology development community, which also has many dif-
ferent levels of expertise. None of the participants were members
of our lab, and had not seen Wordified ontologies previously.

Evaluation results

In this section, we explore the results of the evaluation and de-
scribe the feedback answers from users about the five aspects men-
tioned in the previous section showing their preferences in these
aspects.

Reading and understanding the construction
flow of the ontology

In this context, reading the ontology refers to the action of ex-
ploring and browsing the ontology. Because of our test on the
Wordified ontology, we use the term “reading” as it also has more
text and documentation of the ontology. Also, understanding the
construction flow refers to the ability to follow the development
process of the ontology regardless of the representation format.

Generally, over 60% of the participants find that the ontology is
easy to read in both representations as shown in Figure 7. Al-
though we designed the Wordified ontology with comprehensive
text that explains the construction of the ontology, 40% feel “Neu-
tral” about understanding the construction flow of the ontology
where the same percentage can understand the construction flow
in the Protégé (see Figure 8).

Figure 7: The ease of reading the ontology in: Wordified
ontology and Protégé

Figure 8: Understanding the construction flow of the ontology
in: Wordified ontology and Protégé

Editing the ontology

Editing the ontology in this context refers to any form of the
modification: deletion, insertion or update of the ontology. In a
Wordified ontology, users can also add comments and annotate
the text using the Track changes facility in Word. We asked the
participants to turn on Track changes before they perform any
changes in the ontology. This helps in saving time and effort for
the ontology developers when updating the source code of the
ontology accordingly.

As shown in the Figure 9 below, most participant are either “Satis-
fied” or “Strongly Satisfied” with their performance in the editing
tasks during the test. This indicates modification of a Wordified
ontology is preferred to modification in Protégé.

Figure 9: Results of editing the ontology in: Wordified ontol-
ogy and Protégé

Finding Errors

One of the participants task was to search for the errors we in-
cluded in the ontology and correct them. We intended to discover
how easy and quickly to spot errors in the ontology; hence we
limited the time available for this task. This was a hard task,
most participants 6 managed to detect at most a single error in
the Wordified ontology and two errors in Protégé.

The participants feedback results are quite similar in both parts,
looking at Figure 10, there are nearly the same number of par-
ticipants (nine and ten) either “Satisfied” or “Strongly Satisfied”

66 participants using Wordified ontology and 4 using Protégé.

4



(a) Experience Level in Ontology Usage (b) Experience Level in Ontology Construction

Figure 6: Experience level of our subjects: a) Ontology Usage and b) Ontology Construction

with this task in Wordified ontology and Protégé. A quarter find
it difficult to perform the task of finding errors in Protégé and
nearly a third in Wordified ontology. This could be due to the
time limit we set in our experiments.

Figure 10: Results of Finding Errors in the ontology using:
Wordified ontology and Protégé

Overall preferences

At the end of the session, we asked the subjects about their final
preferences in using the Wordified ontology over Protégé in the
main three aspects: Reading (Exploring), Editing and Learning
about the ontology. The overall preferences of the users between
the two forms are shown in Table 1. Wordified ontology seems
to be preferable in editing, where Protégé is more convenient in
reading and learning the ontology due to the hierarchical repre-
sentation.

We also split the results of “Experts” preferences and “beginners”
(or non-experts), in order to ensure that the level of experience
does not affect users perspectives. We found no divergence in the
results; the Wordified ontology remain the preferable as can be
seen in the Figure 11 below.

Table 1: The preferences of user in using the Wordified on-
tology over Protégé.

Wordified Ontology Protégé Both
Reading 20% 68% 12%
Editing 56% 24% 20%
Learning 20% 56% 24%

Figure 11: Users preferences in “Editing” according to the
their level of expertise

Discussion

In this paper, we have evaluated whether an alternative form of
representation, namely the Wordified ontology, is useful and us-
able by ontology users, both experts and non.

Our analysis of other work in this area shows that, in the field of
ontology engineering, user experience testing is relatively limited
with notable exceptions being the evaluation of an application
ontology [9, 7], and the analysis of Protégé activities [8]. This
paper shows the value of this form of user evaluation because the
results were substantially different from our initial expectations:
we thought people would prefer Protégé, especially for editing, as
it is more familiar and has been longer in development.

Despite that there is no significant difference between the two
formats of the ontology in our test (the p-values are less than 0.05),
which means that the results are relatively close between both
formats; the Wordified ontology seems to compete the Protégé

5



software especially in the area of documenting and editing the
ontology, this is due to the familiarity of the Microsoft Word for
different kinds of users, which requires no prior skills to deal with
these Wordified ontologies.

Alternative representations have been tried before such as the
previously mentioned “Intermediate Representation” [3], also the
auto-generation of textual class definition [14]; in these cases, the
representations have been textual and did not focus on the appli-
cation that the users would use to interact with the text. Like-
wise, for more formal representations, Manchester Syntax [11] and
DOSDP [5] efforts have focused on the representation alone.

In this paper, we have tested the utility of Wordified ontologies,
and this shows that the Wordified ontology has a promising place
in the future of ontology development. Although our word-based
presentation of ontologies is relatively immature, users still found
it useful for understanding and debugging ontologies. Counter to
this, most users preferred Protégé for understanding overall flow,
probably because of the hierarchical browser, as supported by the
previous analysis of Vigo et al˙ [8], which showed that users spent
45% of their time looking at it.

There is still significant work to be done in improving the presenta-
tion of Wordified ontologies. While it is well understood how com-
ments can be written in a light-weight markup and transformed
into Word structure, we lack a good understanding of what text
should go into documentary comments and what should be repre-
sented, for example, as rdfs:comments into the annotation of the
ontology. Similarly, presenting the formal parts of the ontology as
source code in Word is clearly not ideal; a more textual represen-
tation (such as [3] or [14]) might be preferred by users. For a tool
such as Tawny-OWL, the non-ontological parts of the source code
are also challenging. Finally, we need to explore different ways
of integrating Wordified ontologies into the development process;
either for new or existing ontologies.

Tools like this have, however, proven to be very popular in soft-
ware development, and form the basis for behaviour-driven devel-
opment (BDD) [15]; from here, we have taken some of our motiva-
tion. In addition, the use of Office tools remain popular for data
handling, even though they might appear to be poorly suited for
it, because users are very familiar with them.

In our tests, we have shown that, even though immature, Wordi-
fied ontologies can stand alongside or as a partial replacement for
tools such as Protégé. With further development and close at-
tention to user requirements, we believe that they could provide
substantial benefits when properly integrated into the Ontology
Engineering lifecycle.

Acknowledgement

We would like to express our thanks to Newcastle university for
supporting this research. Also, many thanks to the University of
Jeddah, Saudi Arabia for funding the scholarship.

6The property range in Wordified ontology and the ”StuffedCrust-
Base” class in Protégé. If you found them, WELL DONE!

Address for correspondence

Aisha Blfgeh
a.blfgeh1@newcastle.ac.uk
abelfaqeeh@kau.edu.sa

Phillip Lord
phillip.lord@newcastle.ac.uk

References

[1] Aisha Blfgeh, Jennifer D. Warrender, Catharien M. U.
Hilkens, and Phillip Lord. A document-centric approach
for developing the tolapc ontology. In Frank Loebe, Mar-
tin Boeker, Heinrich Herre, Ludger Jansen, and Daniel
Schober, editors, Proceedings of the 7th Workshop on On-
tologies and Data in Life Sciences, ODLS 2016, organized by
the GI Workgroup Ontologies in Biomedicine and Life Sci-
ences (OBML), Halle (Saale), Germany, September 29-30,
2016., volume 1692 of CEUR Workshop Proceedings, pages
1–6. CEUR-WS.org, 2016. http://ceur-ws.org/Vol-1692/

paperB.pdf.

[2] Aisha Blfgeh and Phillip Lord. User and developer inter-
action with editable and readable ontologies. In Proceed-
ings of the 8th International Conference on Biomedical On-
tology (ICBO 2017), Newcastle-upon-Tyne, United Kingdom,
September 13th - 15th, 2017., 2017. URL http://ceur-ws.

org/Vol-2137/paper_28.pdf.

[3] A.L. Rector, P.E. Zanstra, W.D. Solomon, J.E. Rogers,
R. Baud, W. Ceusters, W. Claassen, J. Kirby, J.-M. Ro-
drigues, A. Rossi Mori, E.J. Van der Haring, and J. Wagner.
Reconciling users’ needs and formal requirements: issues in
developing a reusable ontology for medicine. IEEE Transac-
tions on Information Technology in Biomedicine, 2(4):229–
242, 1998. ISSN 10897771. doi: 10.1109/4233.737578. URL
http://ieeexplore.ieee.org/document/737578/.

[4] Mikel Egaña, Robert Stevens, and Erick Antezana. Trans-
forming the Axiomisation of Ontologies: The Ontology Pre-
Processor Language. Proceedigns of OWLED, 2009. doi:
10.1038/npre.2009.4006.1.

[5] David Osumi-Sutherland, Mlanie Courtot, James Balhoff,
and Christopher Mungall. Dead simple owl design pat-
terns. Journal of Biomedical Semantics, 8, 06 2017. doi:
10.1186/s13326-017-0126-0.

[6] Simon Jupp, Matthew Horridge, Luigi Iannone, Julie Klein,
Stuart Owen, Joost Schanstra, Katy Wolstencroft, and
Robert Stevens. Populous: a tool for building owl ontolo-
gies from templates. BMC Bioinformatics, 13(Suppl 1):
S5, 2011. doi: 10.1186/1471-2105-13-S1-S5. URL http:

//dx.doi.org/10.1186/1471-2105-13-S1-S5.

[7] C Maria Keet. The use of foundational ontologies in ontology
development: an empirical assessment. In Extended Semantic
Web Conference, pages 321–335. Springer, 2011.

[8] Markel Vigo, Caroline Jay, and Robert Stevens. Constructing
conceptual knowledge artefacts: activity patterns in the on-
tology authoring process. In Proceedings of the 33rd Annual
ACM Conference on Human Factors in Computing Systems,
pages 3385–3394. ACM, 2015.

6

mailto:a.blfgeh1@ncl.ac.uk
mailto:aaballagih@uj.edu.sa
mailto:phillip.lord@ncl.ac.uk
http://ceur-ws.org/Vol-1692/paperB.pdf
http://ceur-ws.org/Vol-1692/paperB.pdf
http://ceur-ws.org/Vol-2137/paper_28.pdf
http://ceur-ws.org/Vol-2137/paper_28.pdf
http://ieeexplore.ieee.org/document/737578/
http://dx.doi.org/10.1186/1471-2105-13-S1-S5
http://dx.doi.org/10.1186/1471-2105-13-S1-S5


[9] He Tan, Anders Adlemo, Vladimir Tarasov, and Mats E Jo-
hansson. Evaluation of an application ontology. In Proceed-
ings of the Joint Ontology Workshops 2017 Episode 3: The
Tyrolean Autumn of Ontology Bozen-Bolzano, Italy, Septem-
ber 21–23, 2017, volume 2050. CEUR-WS, 2017.

[10] CO-ODE OWL Plugins. Owldoc. https://github.com/

co-ode-owl-plugins/owldoc, 2016.

[11] Matthew Horridge, Nick Drummond, John Goodwin, Alan
Rector, Robert Stevens, and Hai Wang. The manchester owl
syntax. 01 2006.

[12] Phillip Lord and Jennifer D. Warrender. A highly literate
approach to ontology building. abs/1512.04250, 2015. http:
//arxiv.org/abs/1512.04250.

[13] J. D. Warrender and P. Lord. The karyotype ontology: a com-
putational representation for human cytogenetic patterns.
Bio-Ontologies, 2013.

[14] Robert Stevens, James Malone, Sandra Williams, Richard
Power, and Allan Third. Automating generation of textual
class definitions from owl to english. Journal of Biomedical
Semantics, 2(Suppl 2):S5, 2011.

[15] Bdd: Learn about behavior driven development, Dec 2018.
URL https://www.agilealliance.org/glossary/bdd/#q=

~(infinite~false~filters~(postType~(~’page~’post~’

aa_book~’aa_event_session~’aa_experience_report~’

aa_glossary~’aa_research_paper~’aa_video)~tags~(~’

bdd))~searchTerm~’~sort~false~sortDirection~’

asc~page~1).

7

https://github.com/co-ode-owl-plugins/owldoc
https://github.com/co-ode-owl-plugins/owldoc
http://arxiv.org/abs/1512.04250
http://arxiv.org/abs/1512.04250
https://www.agilealliance.org/glossary/bdd/#q=~(infinite~false~filters~(postType~(~'page~'post~'aa_book~'aa_event_session~'aa_experience_report~'aa_glossary~'aa_research_paper~'aa_video)~tags~(~'bdd))~searchTerm~'~sort~false~sortDirection~'asc~page~1)
https://www.agilealliance.org/glossary/bdd/#q=~(infinite~false~filters~(postType~(~'page~'post~'aa_book~'aa_event_session~'aa_experience_report~'aa_glossary~'aa_research_paper~'aa_video)~tags~(~'bdd))~searchTerm~'~sort~false~sortDirection~'asc~page~1)
https://www.agilealliance.org/glossary/bdd/#q=~(infinite~false~filters~(postType~(~'page~'post~'aa_book~'aa_event_session~'aa_experience_report~'aa_glossary~'aa_research_paper~'aa_video)~tags~(~'bdd))~searchTerm~'~sort~false~sortDirection~'asc~page~1)
https://www.agilealliance.org/glossary/bdd/#q=~(infinite~false~filters~(postType~(~'page~'post~'aa_book~'aa_event_session~'aa_experience_report~'aa_glossary~'aa_research_paper~'aa_video)~tags~(~'bdd))~searchTerm~'~sort~false~sortDirection~'asc~page~1)
https://www.agilealliance.org/glossary/bdd/#q=~(infinite~false~filters~(postType~(~'page~'post~'aa_book~'aa_event_session~'aa_experience_report~'aa_glossary~'aa_research_paper~'aa_video)~tags~(~'bdd))~searchTerm~'~sort~false~sortDirection~'asc~page~1)
https://www.agilealliance.org/glossary/bdd/#q=~(infinite~false~filters~(postType~(~'page~'post~'aa_book~'aa_event_session~'aa_experience_report~'aa_glossary~'aa_research_paper~'aa_video)~tags~(~'bdd))~searchTerm~'~sort~false~sortDirection~'asc~page~1)

